Conformal to non-conformal transition via holography: Light scalars \& cosmology

Alex Pomarol UAB \& IFAE (Barcelona)

Interest in the conformal to non-conformal transition:

- Being explored in the lattice (QCD with large number of fermions):
* Light scalar found
* Smaller splittings from chiral breaking
- Important for the hierarchy problem:

SM emerging from a near-conformal theory

- Impact in cosmology:

Supercooling and impact on axion abundance

Conformal window in $\mathrm{SU}(3)$ with large number of fermions $\left(\mathbf{N}_{\mathrm{F}}\right)$

Mass gap $\sim \Lambda_{\mathrm{QCD}}$
Chiral-symmetry breaking

Conformal window in $\mathrm{SU}(3)$ with large number of fermions $\left(\mathbf{N}_{\mathrm{F}}\right)$

Mass gap $\sim \Lambda_{\text {QCD }}$
Chiral-symmetry breaking

No mass gap $\sim \Lambda_{\mathrm{QCD}}$
No chiral-symmetry breaking

Conformal window in $\mathrm{SU}(3)$ with large number of fermions $\left(\mathbf{N}_{\mathrm{F}}\right)$

Conformal window in $\mathrm{SU}(3)$ with large number of fermions $\left(\mathbf{N}_{\mathrm{F}}\right)$

Conformal window in $\mathrm{SU}(3)$ with large number of fermions $\left(\mathbf{N}_{\mathrm{F}}\right)$

Conformal window in $\mathrm{SU}(3)$ with large number of fermions $\left(\mathbf{N}_{\mathrm{F}}\right)$

Conformal window in $\operatorname{SU}(3)$ with large number of fermions $\left(\mathbf{N}_{\mathrm{F}}\right)$

What could we say from holography?

in collaboration with O.Pujolas \& L.Salas

preliminary

see also previous works:
Kutasov,Lin,Parnachev II,
Elander, Piai II, Jarvinen,Kiritsis II, ...

Conformal breaking as N_{F} decreases

How the fixed point could disappear?
Lee,Son,Stephanov,Kaplan

arXiv:0905.4752
using a truncation of the Schwinger-Dyson eqs.

IR \& UV fixed-point annihilation

Conformal breaking as \mathbf{N}_{F} decreases

Triggered by $\langle\mathbf{q} \overline{\mathbf{q}}\rangle \neq \mathbf{0}$ after its dimension becomes imaginary

Conformal breaking as $\mathbf{N}_{\text {F }}$ decreases

Triggered by $\langle\mathbf{q} \overline{\mathbf{q}}\rangle \neq \mathbf{0}$ after its dimension becomes imaginary
Using AdS/CFT:
DICTIONARY
$\mathrm{CFT}_{4} \longrightarrow \mathrm{AdS}_{5}$
$\mathbf{R G}-$ scale $(\mu) \longrightarrow$ extra $\operatorname{dim}(\mathbf{z})$
Strongly-coupled Weakly-coupled

Conformal breaking as \mathbf{N}_{F} decreases

Triggered by $\langle\mathbf{q} \overline{\mathbf{q}}\rangle \neq \mathbf{0}$ after its dimension becomes imaginary
Using AdS/CFT:
DICTIONARY

$$
\begin{aligned}
\mathrm{CFT}_{4} & \longrightarrow \mathrm{AdS}_{5} \\
\overline{\mathrm{q} q} & \longrightarrow \Phi
\end{aligned}
$$

Conformal breaking as \mathbf{N}_{F} decreases

Triggered by $\langle\mathbf{q} \overline{\mathbf{q}}\rangle \neq \mathbf{0}$ after its dimension becomes imaginary
Using AdS/CFT:
DICTIONARY
$\mathrm{CFT}_{4} \longrightarrow \mathrm{AdS}_{5}$
$\overline{\mathbf{q} q} \longrightarrow \Phi$
$\operatorname{Dim}[\overline{\mathbf{q} q}] \longrightarrow \mathbf{M}_{\boldsymbol{\Phi}}^{\mathbf{2}}$

Conformal breaking as \mathbf{N}_{F} decreases

Triggered by $\langle\mathbf{q} \overline{\mathbf{q}}\rangle \neq \mathbf{0}$ after its dimension becomes imaginary
Using AdS/CFT:
DICTIONARY
$\mathrm{CFT}_{4} \longrightarrow \mathrm{AdS}_{5}$
$\overline{\mathbf{q} q} \longrightarrow \Phi$
$\operatorname{Dim}[\overline{\mathbf{q} q}] \longrightarrow \mathbf{M}_{\Phi}^{\mathbf{2}}$
$\operatorname{Dim}[\overline{\mathrm{q}} \mathbf{q}]=2+\sqrt{4+\mathrm{M}_{\Phi}^{2} \mathbf{L}^{2}}$

Conformal breaking as \mathbf{N}_{F} decreases

Triggered by $\langle\mathbf{q} \overline{\mathbf{q}}\rangle \neq \mathbf{0}$ after its dimension becomes imaginary
$\mathrm{CFT}_{4} \longrightarrow \mathrm{AdS}_{5}$
$\overline{\mathbf{q} q} \longrightarrow \Phi$
$\operatorname{Dim}[\overline{\mathbf{q} q}] \longrightarrow \mathbf{M}_{\Phi}^{\mathbf{2}}$
$\operatorname{Dim}[\overline{\mathrm{q} q}]=2+\sqrt{4+\mathrm{M}_{\Phi}^{2} \mathrm{~L}^{2}}$

Imaginary when M_{Φ} goes below the BF bound ($\mathrm{M}_{\Phi}^{2}=-4 / \mathrm{L}^{2}$)

* AdS tachyon!

Conformal breaking as \mathbf{N}_{F} decreases

AdS 5 tachyon!

Conformal breaking in AdS_{5} due to mass running below the BF bound

Conformal breaking in AdS_{5} due to mass running below the BF bound

AdS tachyon

Conformal breaking in AdS_{5} due to mass running below the BF bound
 metric back-reaction from the tachyon:

- Necessary to understand the dilaton/radion mass

The position of the brane is dynamical: Indeed a minimum exits!

To understand better the model,
Lets consider a 5D scalar just a little bit below the BF bound:

$$
M^{2}=-4-\epsilon \quad \& \quad \epsilon \rightarrow 0
$$

4D Massless mode for a critical position of the brane $\mathbf{Z}_{\mathbf{I}}=\mathbf{Z}_{\mathrm{c}}$:

$$
\phi(z)=A z^{2} \sin \left(\sqrt{\epsilon} \ln \frac{z}{z_{\mathrm{UV}}}\right)
$$

$$
\sqrt{\epsilon} \ln \frac{z_{c}}{z_{\mathrm{UV}}}=n \pi \begin{cases}\mathrm{n}=1 & \text { ground state } \\ \mathrm{n}=2,3, \ldots & \text { Efimov states }\end{cases}
$$

(the model has a discrete scale invariance)
N Tachyon mode for $\mathbf{Z}_{\mathrm{I}}>\mathbf{Z}_{\mathrm{C}}$

For $\quad \mathbf{z}_{\mathbf{I}}^{\mathbf{R}} \simeq \mathbf{z}_{\mathbf{c}}: \mathcal{A} \mathcal{T}$ ale of two $4 \mathcal{D}$ scalars: tachyon \& dilaton

$$
V_{\text {eff }}(\phi)=-\frac{1}{2} m^{2}\left(\phi_{D}\right) \phi^{2} \phi_{D}^{2}+\frac{1}{4} \lambda_{\phi} \phi^{4}+\frac{1}{4} \lambda_{D} \phi_{D}^{4}
$$

$$
m^{2}\left(\phi_{D}\right)=\beta \ln \frac{\phi_{D}}{1 / z_{c}}, \quad \beta=\frac{4\left(m_{b}^{2}+2\right)^{2}}{m_{b}^{4}+6 m_{b}^{2}+10},
$$

Integrating out the tachyon

- Coleman-Weinberg-like potential for the dilaton

$$
m_{\phi_{D}}^{2} \sim \beta<4
$$

tachyon VEV \gtrsim dilaton VEV (not supporting arXiv: I 804.00004)

For $z_{I_{R}} \gg Z_{c}$, we need to solve the full 5D theory:

$$
z^{2} \sin \left[\left(\sqrt{\Delta M_{\Phi}^{2}} \ln \frac{z}{z_{0}}\right]\right.
$$

ZIR

For $z_{I_{R}} \gg z_{c}$, we need to solve the full 5D theory:

ZIR

chiral breaking scale >> confinement scale
Expected minimum for $z_{\chi} \sim \mathbf{Z I R}_{\mathbb{R}}$ (but enough parameters to be anywhere)

For $z_{I R} \gg z_{c}$, we need to solve the full 5D theory:

Expected minimum for $z_{\chi} \sim \mathbf{z I R}_{\mathbb{R}}$ (but enough parameters to be anywhere)

In proper coordinates: $\quad d s^{2}=e^{-2 A} d x^{2}-d y^{2}$

$$
\left\{\begin{array}{l}
m_{\phi_{D}}^{2} \simeq-\left.\frac{\kappa^{2}}{3}\left(\frac{m_{b}^{4} \phi^{2}-\phi \partial_{\phi} V}{2 \dot{A}}+2 m_{b}^{2} \phi^{2}\right)\right|_{\mathrm{IR}} \frac{\partial_{y_{\mathrm{IR}}} \phi_{\mathrm{IR}}}{\phi_{\mathrm{IR}}} \\
m_{\rho}^{2} \simeq\left(\left.\frac{3 \pi}{4} \dot{A}\right|_{\mathrm{IR}}\right)^{2} \quad \dot{A}=\sqrt{1+\frac{\kappa^{2}}{12}\left(\frac{\dot{\phi}^{2}}{2}-V(\phi)\right)}
\end{array}\right.
$$

The potential do not need to have a minimum ($\lambda<0$), if strong back-reaction, but this always leads to a lighter dilaton

- Always a light scalar (mostly dilaton) !

As N_{F} decreases, $q \bar{q}$ approaches the free scalar limit

As N_{F} decreases, $q \bar{q}$ approaches the free scalar limit

Closest point to a free scalar!

* Smaller contribution to the mass splitting of resonances (from chiral breaking)

As N_{F} decreases, $q \bar{q}$ approaches the free scalar limit

Geometrical interpretation

As N_{F} decreases, $q \bar{q}$ approaches the free scalar limit

More AdS_{5} predictions

Splitting Adj \& singlet in the scalar sector:

$$
\mathbf{m}_{\mathbf{f}_{0}} \ll \mathbf{m}_{\mathbf{a}_{0}}
$$

but no splitting Adj \& singlet in the spin-I sector:

$$
m_{\boldsymbol{\rho}} \simeq m_{\omega} \quad \& \quad m_{a_{1}} \simeq m_{f_{1}}
$$

\rightarrow Since no 5D double trace operators for vectors, but possible for scalars!

Implications for the hierarchy problem

GROUP E

C Switzerland

Serbia

Nice scenarios to solve the hierarchy problem:

Tachyon in AdS puts you out from a CFT

Hierarchy controlled
by the "slow-rolling" of M_{Φ}
(stable under radiative corrections)

Nice scenarios to solve the hierarchy problem:

Tachyon in AdS puts you out from a CFT

Hierarchy controlled
by the "slow-rolling" of M_{Φ} (stable under radiative corrections)

$$
\Lambda_{\mathrm{IR}} \sim \Lambda_{\mathrm{UV}} \mathbf{e}^{-\pi / \sqrt{\Delta \mathrm{M}_{\phi}^{2}}}
$$

Nice scenarios to solve the hierarchy problem:

Tachyon in AdS puts you out from a CFT

Hierarchy controlled
by the "slow-rolling" of M_{Φ} (stable under radiative corrections)

$$
\Lambda_{\mathrm{IR}} \sim \Lambda_{\mathrm{UV}} \mathbf{e}^{-\pi / \sqrt{\Delta \mathrm{M}_{\phi}^{2}}}
$$

BKT transition

Could this lighter scalar be the Higgs? Resurrecting Technicolor?

Could this lighter scalar be the Higgs? Resurrecting Technicolor?
Mass? Not light enough
For $M_{\text {TC- }} \sim 3 \mathrm{TeV}$,
we need a reduction, in squared masses, of ~ 0.002
Higgs-like coupling? Hardly compatible with present measurements

Could this lighter scalar be the Higgs? Resurrecting Technicolor?
Mass? Not light enough
For $M_{\text {TC- }} \sim 3 \mathrm{TeV}$,
we need a reduction, in squared masses, of ~ 0.002
Higgs-like coupling? Hardly compatible with present measurements
but relevant for the little hierarchy problem?

Implications in the cosmological history

preliminary work with P.Baratella and F. Rompineve

After inflation, reheating, ..., big bang

After inflation, reheating, ..., big bang

$$
\mathbf{F}=\mathbf{E}-\mathbf{S} \mathbf{T}
$$

I) $\operatorname{High} \mathrm{T}$:

$\mathbf{F}=\mathbf{E}-\mathbf{S} \mathbf{T}$
 I) $\operatorname{High} \mathrm{T}$:

II) Critical T: $\quad \mathbf{T}_{\mathbf{c}}{ }^{4} \downarrow$

unconfined phase
confined phase

$$
\mathbf{F}=\mathbf{E}-\mathbf{S} \mathbf{T}
$$

$$
\text { I) } \operatorname{High} \mathrm{T} \text { : }
$$

II) Critical T:
III) $T \ll \Lambda$:

unconfined phase
confined phase

Tunneling rate:

$$
\Gamma \sim \mathrm{e}^{-\mathrm{S}_{\mathrm{E}}} \sim \mathrm{e}^{-1 / \mathrm{g}_{*}^{2}} \sim \mathrm{e}^{-\mathrm{N}_{\mathrm{c}}^{2}}
$$

Tunneling rate:

$$
\Gamma \sim \mathrm{e}^{-\mathrm{S}_{\mathrm{E}}} \sim \mathrm{e}^{-1 / \mathrm{g}_{*}^{2}} \sim \mathrm{e}^{-\mathrm{N}_{\mathrm{c}}^{2}}
$$

From holography:At finite-T, two solutions:

DeConfined phase:

Confined phase:

From holography:At finite-T, two solutions:

DeConfined phase:

Confined phase:

AdS-Schwarzchild

event horizon

Tunneling path: moving the BH horizon to infinity

$\Gamma_{\text {tunnel }} \sim e^{-S_{B}}$

Exit From Inflation

We never exit inflation, unless $N_{c} \leq 7$!

After inflation, reheating, ..., big bang

After inflation, reheating, ..., big bang

Studied by Witten, Nucl.Phys.BI77(198I)477, for a Coleman-Weinberg potential

New scale (\bigwedge_{QCD}) into the dilaton potential:

$$
\Delta \mathbf{V}(\phi) \sim \mathbf{Y}_{\mathbf{q}} \phi\langle\mathbf{q} \overline{\mathbf{q}}\rangle
$$

as masses arises from the TeV strong dynamics

Exit from the supercooling phase at $\approx \Lambda_{\mathrm{QCD}}$:

$$
T_{\text {exit }} \sim \frac{Y_{q}^{1 / 3}}{N_{c}^{4 / 3}} \Lambda_{\mathrm{QCD}}
$$

$\Gamma_{\text {tunnel }} \sim e^{-S_{B}}$

Exit From Inflation

$$
\frac{\Lambda_{\mathrm{QCD}}}{Y_{q}^{1 / 3} N_{c}^{4 / 3}} \sim 20 \mathrm{MeV}
$$

Possible implications of this cosmological phase of supercooling

from P.Baratella (Benasque 18)

Possible implications of this cosmological phase of supercooling

- Additional QCD phase transition

Possibility to be Ist order (extra light states)! Implications? Impact on axion abundance
from P.Baratella (Benasque I8)

Possible implications of this cosmological phase of supercooling

- Additional QCD phase transition
$v_{\text {Ew }}$ Possibility to be Ist order (extra light states)! Implications? Impact on axion abundance
- Exit of supercooling:

F I st order phase transition
Vacuum energy released into thermal energy

- DM and baryon number diluted:
$1 / \mathrm{n}_{\mathrm{Y}} \sim\left(\Lambda_{\mathrm{QCD}} / \mathrm{TeV}\right)^{3} \sim 10^{-9}$
- "Electroweak" baryogenesis if no reheating over the EW scale
- Gravitational waves

Axion relic abundance

$$
\rho_{a}=m_{a}^{2} a^{2} \quad \ddot{a}+3 H \dot{a}+m_{a}^{2}(T) f_{a} \sin \left(\frac{a}{f_{a}}\right)=0
$$

QCD potential

PQ breaking after inflation: Right DM abundances for $\mathrm{f}_{\mathrm{a}} \sim 10^{12} \mathrm{GeV}$

If supercooling:

Ordinary QCD phase transition
$\left(H \sim T^{2} / M_{P}\right)$

Right DM abundances for larger f_{a} :

Conclusions

- Conformal to non-conformal transition are important in physics
- Lattice "sees" a light scalar close to the QCD conformal transition

From holography a light scalar always emerge:
ज Not parametrically lighter than other resonances

- Impact in the cosmological history:

Supercooling

- Additional QCD phase transition triggers the exit of supercooling
- Release of latent heat impact in DM and baryogenesis
- Changes in the axion relic abundance f_{a} larger could be possible!

