Conformal to non-conformal transition via holography: Light scalars & cosmology

Alex Pomarol UAB & IFAE (Barcelona)

Interest in the conformal to non-conformal transition:

- Being explored in the lattice (QCD with large number of fermions):
 - Light scalar found
 - Smaller splittings from chiral breaking
- Important for the hierarchy problem:
 SM emerging from a near-conformal theory
- Impact in cosmology:

Supercooling and impact on axion abundance

Conformal window in SU(3) with large number of fermions (N_F)

Mass gap ~ Λ_{QCD}

Chiral-symmetry breaking

Conformal window in SU(3) with large number of fermions (N_F)

What could we say from holography?

in collaboration with O.Pujolas & L.Salas **DRELIMINARY**

see also previous works:

Kutasov, Lin, Parnachev II, Elander, Piai II, Jarvinen, Kiritsis II, ...

Conformal breaking as N_F decreases

Conformal breaking as NF decreases

Conformal breaking as N_F decreases

Conformal breaking in AdS5 due to mass running below the BF bound

Conformal breaking in AdS5 due to mass running below the BF bound

Conformal breaking in AdS5 due to mass running below the BF bound

• We regularize the IR with a brane, and include the metric back-reaction from the tachyon:

Necessary to understand the dilaton/radion mass

The position of the brane is dynamical: Indeed a minimum exits!

To understand better the model, Lets consider a 5D scalar just a little bit below the BF bound:

 $M^2 = -4 - \epsilon \quad \& \quad \epsilon \to 0$

4D Massless mode for a critical position of the brane $z_{IR}=z_c$:

(the model has a discrete scale invariance)

Tachyon mode for $z_{IR}>z_c$

For $z_{IR} \approx z_c$: A Tale of two 4D scalars: tachyon & dilaton

$$V_{\text{eff}}(\phi) = -\frac{1}{2}m^2(\phi_D)\phi^2\phi_D^2 + \frac{1}{4}\lambda_\phi\phi^4 + \frac{1}{4}\lambda_D\phi_D^4$$
$$m^2(\phi_D) = \beta \ln \frac{\phi_D}{1/z_c}, \qquad \beta = \frac{4(m_b^2 + 2)^2}{m_b^4 + 6m_b^2 + 10}, \text{ boundary mass}$$

Integrating out the tachyon
Coleman-Weinberg-like potential for the dilaton

 $m_{\phi_D}^2 \sim \beta < 4$

tachyon VEV \gtrsim dilaton VEV (not supporting arXiv:1804.00004)

Expected minimum for $z_{\chi} \sim z_{IR}$ (but enough parameters to be anywhere)

Expected minimum for $z_{\chi} \sim z_{IR}$ (but enough parameters to be anywhere)

In proper coordinates:

$$ds^2 = e^{-2A}dx^2 - dy^2$$

$$\begin{cases} m_{\phi_D}^2 \simeq -\frac{\kappa^2}{3} \left(\frac{m_b^4 \phi^2 - \phi \partial_{\phi} V}{2\dot{A}} + 2m_b^2 \phi^2 \right) \Big|_{\mathrm{IR}} \frac{\partial_{y_{\mathrm{IR}}} \phi_{\mathrm{IR}}}{\phi_{\mathrm{IR}}} \\ m_{\rho}^2 \simeq \left(\frac{3\pi}{4} \dot{A} |_{\mathrm{IR}} \right)^2 \qquad \dot{A} = \sqrt{1 + \frac{\kappa^2}{12} \left(\frac{\dot{\phi}^2}{2} - V(\phi) \right)} \end{cases}$$

The potential do not need to have a minimum (λ <0), if strong back-reaction, but this always leads to a **lighter dilaton**

Always a light scalar (mostly dilaton) !

As N_F decreases, $q\bar{q}\,$ approaches the free scalar limit

As N_F decreases, $q\bar{q}\,$ approaches the free scalar limit

Closest point to a free scalar!

Smaller contribution to the mass splitting of resonances (from chiral breaking)

As N_F decreases, $q\bar{q}\,$ approaches the free scalar limit

Geometrical interpretation

As N_F decreases, $q\bar{q}\,$ approaches the <u>free scalar limit</u>

More AdS₅ predictions

Splitting Adj & singlet in the scalar sector: $m_{f_0} \ll m_{a_0}$

but no splitting Adj & singlet in the spin-1 sector: $m_{\rho} \simeq m_{\omega} \quad \& \quad m_{a_1} \simeq m_{f_1}$

Since no 5D double trace operators for vectors, but possible for scalars!

Implications for the hierarchy problem

GROUP E

Nice scenarios to solve the hierarchy problem:

Tachyon in AdS puts you out from a CFT

Hierarchy controlled by the "slow-rolling" of M_{Φ}

(stable under radiative corrections)

Nice scenarios to solve the hierarchy problem:

Tachyon in AdS puts you out from a CFT

Nice scenarios to solve the hierarchy problem:

Tachyon in AdS puts you out from a CFT

BKT transition

Could this lighter scalar be the Higgs? Resurrecting Technicolor?

Could this lighter scalar be the Higgs? Resurrecting Technicolor?

Mass? Not light enough

For $M_{TC-\rho} \sim 3$ TeV, we need a reduction, in squared masses, of ~ 0.002

Higgs-like coupling? Hardly compatible with present measurements

Could this lighter scalar be the Higgs? Resurrecting Technicolor?

Mass? Not light enough

For $M_{TC-\rho} \sim 3$ TeV, we need a reduction, in squared masses, of ~ 0.002

Higgs-like coupling? Hardly compatible with present measurements

Implications in the cosmological history

preliminary work with P.Baratella and F. Rompineve

$$\Gamma \sim \mathrm{e}^{-\mathrm{S_E}} \sim \mathrm{e}^{-1/\mathrm{g}_*^2} \sim \mathrm{e}^{-\mathrm{N_c}^2}$$

Tunneling rate:

 $\Gamma_{tunnel} \sim e^{-S_B}$

Exit From Inflation

We never exit inflation, unless $N_c \lesssim 7!$

New scale (Λ_{QCD}) into the dilaton potential:

$$\mathbf{\Delta V}(\phi) \sim \mathbf{Y}_{\mathbf{q}} \phi \langle \mathbf{q} \mathbf{\bar{q}} \rangle$$

as masses arises from the TeV strong dynamics

Exit from the supercooling phase at $\approx \Lambda_{QCD}$:

$$T_{exit} \sim \frac{Y_q^{1/3}}{N_c^{4/3}} \Lambda_{\rm QCD}$$

$$\frac{\Lambda_{\rm QCD}}{Y_q^{1/3} N_c^{4/3}} \sim 20 \ {\rm MeV}$$

Possible implications of this cosmological phase of supercooling

Possible implications of this cosmological phase of supercooling

Additional QCD phase transition

Possibility to be 1st order (extra light states)! Implications? Impact on axion abundance

Possible implications of this cosmological phase of supercooling

Additional QCD phase transition

Possibility to be 1st order (extra light states)! Implications? Impact on axion abundance

• Exit of supercooling:

Ist order phase transition

Vacuum energy released into thermal energy

• DM and baryon number diluted:

 $1 / n_{\gamma} \sim (\Lambda_{QCD}/TeV)^{3} \sim 10^{-9}$

- "Electroweak" baryogenesis if no reheating over the EW scale
- Gravitational waves

Axion relic abundance

PQ breaking after inflation: **Right DM abundances for f**_a ~ 10¹² GeV

Right DM abundances for larger f_a :

C

Conclusions

- Conformal to non-conformal transition are important in physics
- Lattice "sees" a light scalar close to the QCD conformal transition

From holography a light scalar always emerge: Not parametrically lighter than other resonances

• Impact in the cosmological history:

- Additional QCD phase transition r triggers the exit of supercooling
- Release of latent heat r impact in DM and baryogenesis
- Changes in the axion relic abundance $ractors = f_a$ larger could be possible!

